Optica Open
Browse

Dynamic tuning of ENZ wavelength in conductive polymer films via polaron excitation

Download (5.58 kB)
preprint
posted on 2024-12-31, 17:00 authored by Hongqi Liu, Junjun Jia, Menghui Jia, Chengcan Han, Sanjun Zhang, Hui Ye, Heping Zeng
Traditional metal and n-type doped semiconductor materials serve as emerging epsilon-near-zero (ENZ) materials, showcasing great potential for nonlinear photonic applications. However, a significant limitation for such materials is the lack of versatile ENZ wavelength tuning, and thus dynamic tuning of the ENZ wavelength remains a technical challenge, thereby restricting their potential applications, such as multi-band communications. Here, dynamic tuning of the ENZ wavelength in p-type organic PEDOT: PSS films is achieved through a reversible change in hole concentrations originated from the polaron formation/decoupling following optical excitation, and a tunable ENZ wavelength shift up to 150 nm is observed. Experimental investigations about ultrafast dynamics of polaron excitation reveal an approximately 80 fs time constant for polaron buildup and an approximately 280 fs time constant for polaron decoupling, indicating the potential of reversal ultrafast switching for the ENZ wavelength within subpicosecond time scale. These findings suggest that $p$--type organic semiconductors can serve as a novel platform for dynamically tuning the ENZ wavelength through polaron excitation, opening new possibilities for ENZ--based nonlinear optical applications in flexible optoelectronics.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC