Optica Open
Browse

Dynamical enhancement of nonparaxial effects in the electromagnetic field of a vortex electron

Download (5.58 kB)
preprint
posted on 2023-11-30, 17:59 authored by Dmitry Karlovets
A quantum state of an electron influences its electromagnetic field. If a spatial profile of the electron wave packet is not Gaussian, the particle may acquire additional intrinsic multipole moments, which alter its field, especially at small distances. Here the fields of a vortex electron with orbital angular momentum $\ell$ are obtained in a form of a multipole expansion with an electric quadrupole term kept by using the generalized (non-paraxial) Laguerre-Gaussian beams. The quadrupole contribution arises beyond a paraxial approximation, is linearly enhanced for highly twisted packets with $|\ell| \gg 1$, and can be important for the interactions of twisted beams with bulk matter and artificial structures. Moreover, this term results in an azimuthal asymmetry of the magnetic field in a rest frame of the electron, which appears thanks to the spreading of the packet with time. Thus, somewhat contrary to physical intuition, the spreading may enhance non-paraxial phenomena. For the available electron beams, this asymmetry can in principle be reliably detected, which would be experimental evidence of a non-paraxial effect with the vortex electrons.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC