Optica Open
Browse
arXiv.svg (5.58 kB)

Effective rectification of THz electromagnetic fields in a ferrimagnetic iron garnet

Download (5.58 kB)
preprint
posted on 2023-05-06, 16:01 authored by T. G. H. Blank, E. A. Mashkovich, K. A. Grishunin, C. Schippers, M. V. Logunov, B. Koopmans, A. K. Zvezdin, A. V. Kimel
It is found that single-cycle THz electromagnetic fields efficiently excite a GHz spin resonance mode in ferrimagnetic Tm$_3$Fe$_5$O$_{12}$, despite the near absence of GHz spectral components in the exciting THz pulse. By analyzing how the efficiency of excitation depends on the orientation and strength of the THz electric field, we show that it can be explained in terms of the nonlinear THz inverse Cotton-Mouton effect. Here, the THz electric field gets effectively rectified and acts on the ferrimagnetic spins as a uni-polar effective magnetic field pulse. This interpretation is confirmed by a theoretical model based on the phenomenological analysis of the effective magnetic field, combined with the equations of motion derived from the effective Lagrangian for a ferrimagnet. Moreover, by using the outcome of two-dimensional THz spectroscopy, we conjecture a quantum-mechanical interpretation of the observed effect in terms of stimulated Raman scattering of THz photons by the crystal-field split f-f electronic transitions of Tm$^{3+}$.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC