Optica Open
Browse

Efficient light-trapping in ultrathin GaAs solar cells using quasi-random photonic crystals

Download (5.58 kB)
preprint
posted on 2023-01-12, 15:01 authored by Jeronimo Buencuerpo, Theresa E. Saenz, Mark Steger, Michelle Young, Emily L. Warren, John F. Geisz, Myles A. Steiner, Adele C. Tamboli
Ultrathin solar cells reduce material usage and allow the use of lower-quality materials thanks to their one order of magnitude smaller thickness than their conventional counterparts. However, efficient photonic light-trapping is required to harvest the incident light efficiently for an otherwise insufficient absorber thickness. Quasi-random photonic crystals are predicted to have high efficient light-trapping while being more robust under angle and thickness variations than simple photonic crystals. Here we experimentally demonstrate a light-trapping solution based on quasi-random photonic crystals fabricated by polymer blend lithography. We control the average lattice parameter by modifying the spin-coating speed. We demonstrate an ultrathin GaAs cell of 260 nm with a rear quasi-random pattern with submicron features, and a Jsc =26.4 mA/cm2 and an efficiency of 22.35% under the global solar spectrum.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC