Optica Open
Browse

Efficient second-harmonic emission via strong modal overlap in single-resonant lithium niobate nanocavity

Download (5.58 kB)
preprint
posted on 2025-03-28, 16:01 authored by Zhi Jiang, Danyang Yao, Yu Gao, Xu Ran, Duomao Li, Erqi Zhang, Jianguo Wang, Xuetao Gan, Jinchuan Zhang, Fengqi Liu, Yue Hao
High-efficiency second-harmonic generation (SHG) in compact integrated photonic systems is crucial for advancing nonlinear optical technologies. However, achieving exceptional conversion efficiencies while maintaining stable performance remains a significant challenge. Here, we report a high-Q single-resonant photonic crystal nanobeam cavity (PCNBC) on a polymer-loaded lithium niobate on insulator (LNOI) platform, which enables bright second-harmonic (SH) emission. Through synergistic optimization of modal confinement and spatial overlap in a y-cut LN architecture, our device achieves a normalized SHG conversion efficiency of 163%/W, outperforming previous LN-based photonic crystal cavities LN-based photonic crystal cavities by over three orders of magnitude. The visible SH emission at 768.77 nm exhibits a single-lobe radiation pattern with precise spectral alignment between fundamental (FH) and second-harmonic (SH) modes, a critical feature for integrated photonic circuits. Remarkably, the conversion efficiency remains stable under thermal variations up to 20{\deg}C, addressing a key limitation of multi-resonant systems. High-order cavity modes are directly visualized via CCD imaging, confirming strong spatial overlap. This work establishes a record SHG conversion efficiency for LN microcavities and provides a scalable, temperature-insensitive architecture for nonlinear light sources, with immediate applications in quantum optics and chip-scale interconnects.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC