Optica Open
Browse

Electric field induced color switching in colloidal quantum dot molecules at room temperature

Download (5.58 kB)
preprint
posted on 2023-05-17, 16:01 authored by Yonatan Ossia, Adar Levi, Yossef E. Panfil, Somnath Koley, Einav Scharf, Nadav Chefetz, Sergei Remennik, Atzmon Vakahi, Uri Banin
Colloidal semiconductor quantum dots are robust emitters implemented in numerous prototype and commercial optoelectronic devices. However, active fluorescence color tuning, achieved so far by electric-field induced Stark effect, has been limited to a small spectral range, and accompanied by intensity reduction due to the electron-hole charge separation effect. Utilizing quantum dot molecules that manifest two coupled emission centers, we present a novel electric-field induced instantaneous color switching effect. Reversible emission color switching without intensity loss is achieved on a single particle level, as corroborated by correlated electron microscopy imaging. Simulations establish that this is due to the electron wavefunction toggling between the two centers dictated by the electric-field and affected by the coupling strength. The quantum dot molecules manifesting two coupled emission centers may be tailored to emit distinct colors, opening the path for sensitive field sensing and color switchable devices such as a novel pixel design for displays or an electric field color tunable single photon source.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC