Owing to its true direct bandgap and tunable bandgap energies,GeSn alloys are increasingly attractive as gain media for mid-IR lasers that can be monolithically integrated on Si. Demonstrations of optically pumped GeSn laser at room under pulsed condition and at cryogenic temperature under continuous-wave excitation show great promise of GeSn lasers to be efficient electrically injected light sources on Si. Here we report electrically injected GeSn lasers using Fabry-Perot cavity with 20, 40, and 80 micron ridge widths. A maximum operating temperature of 140 K with lasing threshold of 0.756 kA/cm2 at 77 K and emitting wavelength of 2722 nm at 140 K was obtained. The lower threshold current density compared to previous works was achieved by reducing optical loss and improving the optical confinement. The peak power was measured as 2.2 mW/facet at 77 K.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.