Optica Open
Browse

Electrically Reconfigurable Intelligent Optoelectronics in 2-D van der Waals Materials

Download (5.58 kB)
preprint
posted on 2025-03-06, 17:00 authored by Yu Wang, Dehui Zhang, Yihao Song, Jea Jung Lee, Meng Tian, Souvik Biswas, Fengnian Xia, Qiushi Guo
In optoelectronics, achieving electrical reconfigurability is crucial as it enables the encoding, decoding, manipulating, and processing of information carried by light. In recent years, two-dimensional van der Waals (2-D vdW) materials have emerged as promising platforms for realizing reconfigurable optoelectronic devices. Compared to materials with bulk crystalline lattice, 2-D vdW materials offer superior electrical reconfigurability due to high surface-to-volume ratio, quantum confinement, reduced dielectric screening effect, and strong dipole resonances. Additionally, their unique band structures and associated topology and quantum geometry provide novel tuning capabilities. This review article seeks to establish a connection between the fundamental physics underlying reconfigurable optoelectronics in 2-D materials and their burgeoning applications in intelligent optoelectronics. We first survey various electrically reconfigurable properties of 2-D vdW materials and the underlying tuning mechanisms. Then we highlight the emerging applications of such devices, including dynamic intensity, phase and polarization control, and intelligent sensing. Finally, we discuss the opportunities for future advancements in this field.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC