Optica Open
Browse

Electrically controlling vortices in a neutral exciton polariton condensate at room temperature

Download (5.58 kB)
preprint
posted on 2023-01-10, 03:11 authored by Xiaokun Zhai, Xuekai Ma, Ying Gao, Chunzi Xing, Meini Gao, Haitao Dai, Xiao Wang, Anlian Pan, Stefan Schumacher, Tingge Gao
Manipulating bosonic condensates with electric fields is very challenging as the electric fields do not directly interact with the neutral particles of the condensate. Here we demonstrate a simple electric method to tune the vorticity of exciton polariton condensates in a strong coupling liquid crystal (LC) microcavity with CsPbBr$_3$ microplates as active material at room temperature. In such a microcavity, the LC molecular director can be electrically modulated giving control over the polariton condensation in different modes. For isotropic non-resonant optical pumping we demonstrate the spontaneous formation of vortices with topological charges of +1, +2, -2, and -1. The topological vortex charge is controlled by a voltage in the range of 1 to 10 V applied to the microcavity sample. This control is achieved by the interplay of a built-in potential gradient, the anisotropy of the optically active perovskite microplates, and the electrically controllable LC molecular director in our system with intentionally broken rotational symmetry. Besides the fundamental interest in the achieved electric polariton vortex control at room temperature, our work paves the way to micron-sized emitters with electric control over the emitted light's phase profile and quantized orbital angular momentum for information processing and integration into photonic circuits.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC