posted on 2024-07-12, 16:00authored byMarcin Muszyński, Przemysław Oliwa, Pavel Kokhanchik, Piotr Kapuściński, Eva Oton, Rafał Mazur, Przemysław Morawiak, Wiktor Piecek, Przemysław Kula, Witold Bardyszewski, Barbara Piętka, Daniil Bobylev, Dmitry Solnyshkov, Guillaume Malpuech, Jacek Szczytko
We create a one-dimensional photonic crystal with strong polarization dependence and tunable by an applied electric field. We accomplish this in a planar microcavity by embedding a cholesteric liquid crystal (LC), which spontaneously forms a uniform lying helix (ULH). The applied voltage controls the orientation of the LC molecules and, consequently, the strength of a polarization-dependent periodic potential. It leads to opening or closing of photonic band gaps in the dispersion of the massive photons in the microcavity. In addition, when the ULH structure possesses a molecular tilt, it induces a spin-orbit coupling between the lattice bands of different parity. This interband spin-orbit coupling (ISOC) is analogous to optical activity and can be treated as a synthetic non-Abelian gauge potential. Finally, we show that doping the LC with dyes allows us to achieve lasing that inherits all the above-mentioned tunable properties of LC microcavity, including dual and circularly-polarized lasing.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.