Optica Open
Browse

Electronically Programmable Photonic Molecule

Download (5.58 kB)
preprint
posted on 2023-11-30, 06:20 authored by Mian Zhang, Cheng Wang, Yaowen Hu, Amirhassan Shams-Ansari, Tianhao Ren, Shanhui Fan, Marko Loncar
Physical systems with discrete energy levels are ubiquitous in nature and are fundamental building blocks of quantum technology. Realizing controllable artifcial atom- and molecule-like systems for light would allow for coherent and dynamic control of the frequency, amplitude and phase of photons. In this work, we demonstrate a photonic molecule with two distinct energy-levels and control it by external microwave excitation. We show signature two-level dynamics including microwave induced photonic Autler-Townes splitting, Stark shift, Rabi oscillation and Ramsey interference. Leveraging the coherent control of optical energy, we show on-demand photon storage and retrieval in optical microresonators by reconfguring the photonic molecule into a bright-dark mode pair. These results of dynamic control of light in a programmable and scalable electro-optic platform open doors to applications in microwave photonic signal processing, quantum photonics in the frequency domain, optical computing concepts and simulations of complex physical systems.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC