Optica Open
Browse
arXiv.svg (5.58 kB)

Endoscopic en-face optical coherence tomography and fluorescence imaging using correlation-based probe tracking

Download (5.58 kB)
preprint
posted on 2023-01-12, 14:15 authored by Manuel J. Marques, Michael R. Hughes, Adrián F. Uceda, Grigory Gelikonov, Adrian Bradu, Adrian Podoleanu
Forward-viewing endoscopic optical coherence tomography (OCT) provides 3D imaging in vivo, and can be combined with widefield fluorescence imaging by use of a double-clad fiber. However, it is technically challenging to build a high-performance miniaturized 2D scanning system with a large field-of-view. In this paper we demonstrate how a 1D scanning probe, which produces cross-sectional OCT images (B-scans) and 1D fluorescence T-scans, can be transformed into a 2D scanning probe by manual scanning along the second axis. OCT volumes are assembled from the B-scans using speckle decorrelation measurements to estimate the out-of-plane motion along the manual scan direction. Motion within the plane of the B-scans is corrected using image registration by normalized cross correlation. En-face OCT slices and fluorescence images, corrected for probe motion in 3D, can be displayed in real-time during the scan. For a B-scan frame rate of 250 Hz, and an OCT lateral resolution of approximately 20 micrometers, the approach can handle out-of-plane motion at speeds of up to 4 mm/s.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC