Optica Open
Browse

Energy Scalability Limits of Dissipative Solitons

Download (5.58 kB)
preprint
posted on 2024-12-07, 17:00 authored by Vladimir L. Kalashnikov, Alexander Rudenkov, Evgeni Sorokin, Irina T. Sorokina
In this study, we apply a thermodynamical approach to elucidate the primary constraints on the energy scaling of dissipative solitons (DS). We rely on the adiabatic theory of strongly chirped DS and define the DS energy scaling in terms of dissipative soliton resonance (DSR). Three main experimentally verifiable signatures identify a transition to DSR: i) growth of a Lorentzian spike at the centrum of the DS spectrum, which resembles a spectral condensation in Bose-Einstein condensate (BEC), ii) saturation of the spectrum broadening, and iii) asymptotical DS stretching. We connect the DSR breakup with three critical factors: i) decoupling of two correlation scales inherent in strongly chirped DS, ii) resulting rise of the DS entropy with energy, which provokes its disintegration, and iii) transition to a nonequilibrium phase, which is characterized by negative temperature. The breakup results in multiple stable DSs with lower energy. Theoretical results are in good qualitative agreement with the experimental data from a Kerr-lens mode-locked Cr$^{2+}$:ZnS chirped-pulse oscillator (CPO) that paves the way for optimizing high-energy femtosecond pulse generation in solid-state CPO and all-normal-dispersion fiber lasers.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC