Optica Open
Browse

Energy scaling in a compact bulk multi-pass cell enabled by Laguerre-Gaussian single-vortex beams

Download (5.58 kB)
preprint
posted on 2024-12-19, 17:00 authored by Victor Koltalo, Saga Westerberg, Melvin Redon, Gaspard Beaufort, Ann-Kathrin Raab, Chen Guo, Cord L. Arnold, Anne-Lise Viotti
We report pulse energy scaling enabled by the use of Laguerre-Gaussian single-vortex ($\text{LG}_{0,l}$) beams for spectral broadening in a sub-40 cm long Herriott-type bulk multi-pass cell. Beams with orders ${l= 1-3}$ are generated by a spatial light modulator, which facilitates rapid and precise reconfiguration of the experimental conditions. 180 fs pulses with 610 uJ pulse energy are post-compressed to 44 fs using an $\text{LG}_{0,3}$ beam, boosting the peak power of an Ytterbium laser system from 2.5 GW to 9.1 GW. The spatial homogeneity of the output $\text{LG}_{0,l}$ beams is quantified and the topological charge is spectrally-resolved and shown to be conserved after compression by employing a custom spatio-temporal coupling measurement setup.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC