We report pulse energy scaling enabled by the use of Laguerre-Gaussian single-vortex ($\text{LG}_{0,l}$) beams for spectral broadening in a sub-40 cm long Herriott-type bulk multi-pass cell. Beams with orders ${l= 1-3}$ are generated by a spatial light modulator, which facilitates rapid and precise reconfiguration of the experimental conditions. 180 fs pulses with 610 uJ pulse energy are post-compressed to 44 fs using an $\text{LG}_{0,3}$ beam, boosting the peak power of an Ytterbium laser system from 2.5 GW to 9.1 GW. The spatial homogeneity of the output $\text{LG}_{0,l}$ beams is quantified and the topological charge is spectrally-resolved and shown to be conserved after compression by employing a custom spatio-temporal coupling measurement setup.