posted on 2023-01-10, 02:27authored byO. Florez, G. Arregui, M. Albrechtsen, R. C. Ng, J. Gomis-Bresco, S. Stobbe, C. M. Sotomayor-Torres, P. D. García
Controlling the vibrations in solids is crucial to tailor their mechanical properties and their interaction with light. Thermal vibrations represent a source of noise and dephasing for many physical processes at the quantum level. One strategy to avoid these vibrations is to structure a solid such that it possesses a phononic stop band, i.e., a frequency range over which there are no available mechanical modes. Here, we demonstrate the complete absence of mechanical vibrations at room temperature over a broad spectral window, with a 5.3 GHz wide band gap centered at 8.4 GHz in a patterned silicon nanostructure membrane measured using Brillouin light scattering spectroscopy. By constructing a line-defect waveguide, we directly measure GHz localized modes at room temperature. Our experimental results of thermally excited guided mechanical modes at GHz frequencies provides an eficient platform for photon-phonon integration with applications in optomechanics and signal processing transduction.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.