Optica Open
Browse
arXiv.svg (5.58 kB)

Enhanced Plasmonic Photocatalysis through Cooperative Plasmonic--Photonic Hybridization

Download (5.58 kB)
preprint
posted on 2023-11-30, 19:11 authored by Qinglan Huang, Taylor D. Canady, Rohit Gupta, Nantao Li, Srikanth Singamaneni, Brian T. Cunningham
Plasmonic nanoparticles (NPs) hold tremendous promise for catalyzing light-driven chemical reactions. The conventionally assumed detrimental absorption loss from plasmon damping can now be harvested to drive chemical transformations of the NP adsorbent, through the excitation and transfer of energetic "hot" carriers. The rate and selectivity of plasmonic photocatalysis are dependent on the characteristics of the incident light. By engineering the strength and wavelength of the light harvesting of a NP, it is possible to achieve more efficient and predictive photocatalysts. We report a plasmonic--photonic resonance hybridization strategy to substantially enhance hot electron generation at tunable, narrow-band wavelengths. By coupling the plasmon resonance of silver NPs to the guided mode resonance in a photonic crystal (PC) slab, the reaction rate of a hot-electron-driven reduction conversion is greatly accelerated. The mechanism is broadly compatible with NPs with manifold materials and shapes optimized for the targeted chemistry. The novel enhancement platform sheds light on rational design of high-performance plasmonic photocatalysts.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC