Optica Open
Browse
arXiv.svg (5.58 kB)

Enhanced opposite Imbert-Fedorov shifts of vortex beams for precise sensing of temperature and thickness

Download (5.58 kB)
preprint
posted on 2023-11-18, 17:01 authored by Guiyuan Zhu, Binjie Gao, Linhua Ye, Junxiang Zhang, Li-Gang Wang
Imbert-Fedorov (IF) shift, which refers to a tiny transverse splitting induced by spin-orbit interaction at a reflection/refraction interface, is sensitive to the refractive index of a medium and momentum state of incident light. Most of studies have focused on the shift for an incident light beam with a spin angular momentum (SAM) i.e., circular polarization. Compared to SAM, orbital angular momentum (OAM) has infinite dimensions in theory as a new degree of freedom of light and plays an important role in light-matter coupling. We demonstrate experimentally that the relative IF shifts of vortex beams with large opposite OAMs are highly enhanced in resonant structures when light refracts through a double-prism structure (DPS), in which the thickness and temperature of the air gap are precisely sensed via the observed relative IF shifts. The thickness and temperature sensitivities increase as the absolute value of opposite OAMs increases. Our results offer a technological and practical platform for applications in sensing of thickness and temperature, ingredients of environment gas, spatial displacement, chemical substances and deformation structure.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC