posted on 2025-01-04, 17:00authored byZiwen Yan, Xianfei Zhang, Yuyin Li, Zili Xie, Xiangqian Xiu, Dunjun Chen, Ping Han, Yi Shi, Rong Zhang, Youdou Zheng, Peng Chen
High-efficiency micro-light-emitting diodes (Micro-LEDs) are key devices for next-generation display technology. However, when the mesa size is reduced to around tens of micrometers or less, the luminous efficiency is constrained by the "efficiency-on-size effect". This work details the fabrication of gallium nitride (GaN) based Micro-LEDs with various mesa shapes and a single porous layer under the active region. A modified green LED epitaxial structure with different doped n-GaN layers combined with electrochemical etching created the porous layer. The strong light confinement achieved by the porous layer and the polygonal mesa greatly enhances spontaneous emission. The luminous intensity of the Micro-LEDs with the porous layer is approximately 22 times greater than those Micro-LEDs without the porous layer. A significant reduction in minimum full width at half maximum (FWHM) was observed in polygonal devices, suggesting a change in the luminescence mechanism. The influence of varying device geometry on emission performance was investigated. Experimental results reveal that, unlike circular porous Micro-LEDs, square and hexagonal porous Micro-LEDs exhibit more pronounced resonant emission, which provides a new technological approach for the further development of high-performance Micro-LEDs and lasers.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.