Optica Open
Browse
arXiv.svg (5.58 kB)

Enhanced principle component method for fringe removal in cold atom images

Download (5.58 kB)
preprint
posted on 2023-11-30, 19:42 authored by Feng Xiong, Yun Long, Colin V. Parker
Many powerful imaging techniques for cold atoms are based on determining the optical density by comparing a beam image having passed through the atom cloud to a reference image taken under similar conditions with no atoms. In practice the beam profile typically contains interference fringes whose phase is not stable between camera exposures. To reduce the error of these fringes in the computed optical density, an algorithm based on principle component analysis (PCA) is often employed. However, PCA is general purpose and not tailored to the specific case of interference fringes. Here we demonstrate an algorithm that takes advantage of the Fourier-space structure of interference fringes to further reduce the residual fringe signatures in the optical density.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC