Optica Open
Browse
arXiv.svg (5.58 kB)

Enhanced sensing of optomechanically induced nonlinearity by linewidth suppression and optical bistability in cavity-waveguide systems

Download (5.58 kB)
preprint
posted on 2023-03-23, 16:01 authored by Chun-Wang Liu, Ye Liu, Lei Du, Wan-Jun Su, Huaizhi Wu, Yong Li
We study enhanced sensing of optomechanically induced nonlinearity (OMIN) in a cavity-waveguide coupled system. The Hamiltonian of the system is anti-PT symmetric with the two involved cavities being dissipatively coupled via the waveguide. When a weak waveguide-mediated coherent coupling is introduced, the anti-PT symmetry may break down. However, we find a strong bistable response of the cavity intensity to the OMIN near the cavity resonance, benefiting from linewidth suppression caused by the vacuum induced coherence. The joint effect of optical bistability and the linewidth suppression is inaccessible by the anti-PT symmetric system involving only dissipative coupling. Due to that, the sensitivity is greatly enhanced by two orders of magnitude compared to that for the anti-PT symmetric model. Moreover, the sensitivity shows resistances to a reasonably large cavity decay and robustness to fluctuations in the cavity-waveguide detuning. Based on the integrated optomechanical cavity-waveguide systems, the scheme can be used for sensing different physical quantities related to the single-photon coupling strength, and has potential applications in high-precision measurements with physical systems involving Kerr-type nonlinearity.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC