Optica Open
Browse
arXiv.svg (5.58 kB)

Enhancing vibrational light-matter coupling strength beyond the molecular concentration limit using plasmonic arrays

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:43 authored by Manuel Hertzog, Battulga Munkhbat, Denis G. Baranov, Timur O. Shegai, Karl Börjesson
Vibrational strong coupling is emerging as a promising tool to modify molecular properties, by making use of hybrid light-matter states known as polaritons. Fabry-Perot cavities filled with organic molecules are typically used, and the molecular concentration limits the maximum reachable coupling strength. Developing methods to increase the coupling strength beyond the molecular concentration limit are highly desirable. In this letter, we investigate the effect of adding a gold nanorod array into a cavity containing pure organic molecules, using FT-IR microscopy and numerical modeling. Incorporation of the plasmonic nanorod array, that acts as artificial molecules, leads to an order of magnitude increase in the total coupling strength for the cavity filled with organic molecules. Additionally, we observe a significant narrowing of the plasmon linewidth inside the cavity. We anticipate that these results will be a step forward in exploring vibropolaritonic chemistry and may be used in plasmon based bio-sensors.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC