Optica Open
Browse

Tuneable entangled photon pair generation in a liquid crystal

Download (5.58 kB)
Version 2 2024-06-05, 16:00
Version 1 2024-01-18, 17:00
preprint
posted on 2024-06-05, 16:00 authored by Vitaliy Sultanov, Aljaž Kavčič, Emmanuil Kokkinakis, Nerea Sebastián, Maria V. Chekhova, Matjaž Humar
Liquid crystals, with their ability of self-assembly, strong response to the electric field, and integrability into complex systems, are key materials in light beam manipulation. Recently discovered ferroelectric nematic liquid crystals also possess a considerable second-order optical nonlinearity, making them a perspective material for nonlinear optics. Their use as sources of quantum light could drastically extend the boundaries of photonic quantum technologies. However, spontaneous parametric down-conversion, the basic source of entangled photons, heralded single photons, and squeezed light, has been so far not observed in liquid crystals - or in any liquids or organic materials. Here, we implement spontaneous parametric down-conversion in a ferroelectric nematic liquid crystal and demonstrate electric-field tunable broadband generation of entangled photons, with the efficiency comparable to that of the best nonlinear crystals. The emission rate and polarization state of photon pairs is dramatically varied by applying a few volts or twisting the molecular orientation along the sample. A liquid crystal source enables a new type of quasi-phasematching, which is based on molecular twist structure and is therefore reconfigurable for the desired spectral and polarization properties of photon pairs. Such sources promise to outperform standard nonlinear optical materials in terms of functionality, brightness and the tunability of the generated quantum state. The concepts developed here can be extended to complex topological structures, macroscopic devices, and multi-pixel tunable quantum light sources.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC