Optica Open
Browse
arXiv.svg (5.58 kB)

Entanglement Emerges from Dissipation-Structured Quantum Self-Organization

Download (5.58 kB)
preprint
posted on 2023-01-10, 02:21 authored by Zhi-Bo Yang, Yi-Pu Wang, Jie Li, C. -M. Hu, J. Q. You
Entanglement is a holistic property of multipartite quantum systems, which is accompanied by the establishment of nonclassical correlations between subsystems. Most entanglement mechanisms can be described by a coherent interaction Hamiltonian, and entanglement develops over time. In other words, the generation of entanglement has a time arrow. Dissipative structure theory directs the evolving time arrow of a non-equilibrium system. By dissipating energy to the environment, the system establishes order out of randomness. This is also referred to as self-organization. Here, we explore a new mechanism to create entanglement, utilizing the wisdom of dissipative structure theory in quantum systems. The entanglement between subsystems can emerge via the dissipation-structured correlation. This method requires a non-equilibrium initial state and cooperative dissipation, which can be implemented in a variety of waveguide-coupled quantum systems.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC