Optica Open
Browse

Entangling Bosons through Particle Indistinguishability and Spatial Overlap

Download (5.58 kB)
preprint
posted on 2023-11-30, 19:17 authored by Mariana R. Barros, Seungbeom Chin, Tanumoy Pramanik, Hyang-Tag Lim, Young-Wook Cho, Joonsuk Huh, Yong-Su Kim
Particle identity and entanglement are two fundamental quantum properties that work as major resources for various quantum information tasks. However, it is still a challenging problem to understand the correlation of the two properties in the same system. While recent theoretical studies have shown that the spatial overlap between identical particles is necessary for nontrivial entanglement, the exact role of particle indistinguishability in the entanglement of identical particles has never been analyzed quantitatively before. Here, we theoretically and experimentally investigate the behavior of entanglement between two bosons as spatial overlap and indistinguishability simultaneously vary. The theoretical computation of entanglement for generic two bosons with pseudospins is verified experimentally in a photonic system. Our results show that the amount of entanglement is a monotonically increasing function of both quantities. We expect that our work provides an insight into deciphering the role of the entanglement in quantum networks that consist of identical particles.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC