Optica Open
Browse
- No file added yet -

Exciton-Plasmon Coupling in 2D Semiconductors by Surface Acoustic Waves

Download (5.58 kB)
preprint
posted on 2023-11-30, 21:15 authored by Rajveer Fandan, Jorge Pedrós, Fernando Calle
We theoretically demonstrate the coupling between excitons in 2D semiconductors and surface plasmons in a thin metal film by means of a surface acoustic wave (SAW), proving that the generated exciton-plasmon polaritons (or plexcitons) are in the strong coupling regime. The strain field of the SAW creates a dynamic diffraction grating providing the momentum match for the surface plasmons, whereas the piezoelectric field, that could dissociate the excitons, is cancelled out by the metal. This is exemplified for monolayer MoS$\mathrm{_{2}}$ and mono- and few-layer black phosphorus on top of a thin silver layer on a LiNbO$\mathrm{_{3}}$ piezoelectric substrate, providing Rabi splittings of 100-150 meV. Thus, we demonstrate that SAWs are powerful tools to modulate the optical properties of supported 2D semiconductors by means of the high-frequency localized deformations tailored by the acoustic transducers, that can serve as electrically switchable launchers of propagating plexcitons suitable for active high-speed nanophotonic applications.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC