Optica Open
Browse

Experimental Realization of a Quantum Autoencoder: The Compression of Qutrits via Machine Learning

Download (5.58 kB)
preprint
posted on 2023-11-30, 06:23 authored by Alex Pepper, Nora Tischler, Geoff J. Pryde
With quantum resources a precious commodity, their efficient use is highly desirable. Quantum autoencoders have been proposed as a way to reduce quantum memory requirements. Generally, an autoencoder is a device that uses machine learning to compress inputs, that is, to represent the input data in a lower-dimensional space. Here, we experimentally realize a quantum autoencoder, which learns how to compress quantum data using a classical optimization routine. We demonstrate that when the inherent structure of the data set allows lossless compression, our autoencoder reduces qutrits to qubits with low error levels. We also show that the device is able to perform with minimal prior information about the quantum data or physical system and is robust to perturbations during its optimization routine.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC