Optica Open
Browse

Experimental measurement of the divergent quantum metric of an exceptional point

Download (5.58 kB)
preprint
posted on 2023-11-30, 21:01 authored by Qing Liao, Charly Leblanc, Jiahuan Ren, Feng Li, Yiming Li, Dmitry Solnyshkov, Guillaume Malpuech, Jiannian Yao, Hongbing Fu
The geometry of Hamiltonian's eigenstates is encoded in the quantum geometric tensor (QGT). It contains both the Berry curvature, central to the description of topological matter and the quantum metric. So far the full QGT has been measured only in Hermitian systems, where the role of the quantum metric is mostly shown to determine corrections to physical effects. On the contrary, in non-Hermitian systems, and in particular near exceptional points, the quantum metric is expected to diverge and to often play a dominant role, for example on the enhanced sensing and on wave packet dynamics. In this work, we report the first experimental measurement of the quantum metric in a non-Hermitian system. The specific platform under study is an organic microcavity with exciton-polariton eigenstates, which demonstrate exceptional points. We measure the quantum metric's divergence and we determine the scaling exponent $n=-1.01\pm0.08$, which is in agreement with theoretical predictions for the second-order exceptional points.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC