posted on 2023-11-30, 17:48authored byBhaskar Kanseri, Sethuraj K. R
For light fields, the manifestation of correlations between fluctuating electric field components at different space-time points is referred to as coherence, whereas these correlations appearing between orthogonal electric field components at single space-time point are referred to as polarization. In this context, a natural question is: how coherence and polarization are interconnected? Very recently, a tight equality P^2=V^2+D^2 namely the "polarization coherence theorem" (PCT) connecting polarization P with interference visibility V (measure of coherence) and distinguishability D (measure of which-path information) has been proposed [Optica 4, 1113 (2017)]. We here report a direct observation of PCT for classical light fields using a Mach-Zehnder interferometer along with a synthesized source producing a complete gamut of degrees of polarizations. Our experimental demonstration could motivate ongoing experimental efforts towards probing the hidden coherences and complementarity features.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.