Optica Open
arXiv.svg (5.58 kB)

Experimentally bounding deviations from quantum theory in the landscape of generalized probabilistic theories

Download (5.58 kB)
posted on 2023-11-30, 17:29 authored by Michael D. Mazurek, Matthew F. Pusey, Kevin J. Resch, Robert W. Spekkens
Many experiments in the field of quantum foundations seek to adjudicate between quantum theory and speculative alternatives to it. This requires one to analyze the experimental data in a manner that does not presume the correctness of the quantum formalism. The mathematical framework of generalized probabilistic theories (GPTs) provides a means of doing so. We present a scheme for determining which GPTs are consistent with a given set of experimental data. It proceeds by performing tomography on the preparations and measurements in a self-consistent manner, i.e., without presuming a prior characterization of either. We illustrate the scheme by analyzing experimental data for a large set of preparations and measurements on the polarization degree of freedom of a single photon. We find that the smallest and largest GPT state spaces consistent with our data are a pair of polytopes, each approximating the shape of the Bloch Sphere and having a volume ratio of $0.977 \pm 0.001$, which provides a quantitative bound on the scope for deviations from quantum theory. We also demonstrate how our scheme can be used to bound the extent to which nature might be more nonlocal than quantum theory predicts, as well as the extent to which it might be more or less contextual. Specifically, we find that the maximal violation of the CHSH inequality can be at most $1.3\% \pm 0.1$ greater than the quantum prediction, and the maximal violation of a particular inequality for universal noncontextuality can not differ from the quantum prediction by more than this factor on either side. The most significant loophole in this sort of analysis is that the set of preparations and measurements one implements might fail to be tomographically complete for the system of interest.



This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics




    Ref. manager