Optica Open
Browse

Exploiting Non-Diffracting Beams for Resilient Near-Field Millimeter-Wave Communications A Quantitative Roadmap

Download (5.58 kB)
Version 2 2025-10-29, 16:00
Version 1 2025-10-18, 16:02
preprint
posted on 2025-10-29, 16:00 authored by Yifeng Qin, Jing Chen, Zhi Hao Jiang, Zhining Chen, Yongming Huang
Non diffracting (ND) beams are often cited as a promising solution to mitigate blockage in millimeter wave (mmWave) systems. However, a quantitative answer to the fundamental question, under what specific conditions do ND beams actually outperform conventional pencil beams, has remained elusive, especially in the emerging context of near-field communications. This paper provides the first systematic answer by mapping the performance advantage regimes of ND beams for blockage-resilient near-field links. We propose a unified holographic generator that synthesizes various structured beams (e.g., Bessel, Mathieu) under the physical constraints of a planar phased array, ensuring a fair comparison against a boresight baseline with identical EIRP and aperture. Through extensive, unbiased Monte Carlo simulations, we construct advantage regime maps that delineate the specific regions where ND beams offer a tangible link-level gain. Our key finding is that the advantage of ND beams is a powerful but conditional near field phenomenon. While offering a positive average gain, its performance is highly variable, with a 60-70% probability of outperforming the baseline in its optimal range. Crucially, this performance is strongly modulated by the obstacle's geometry, revealing a significant weakness against large blockers. These findings provide not just a practical roadmap for judiciously employing ND beams but also a clear motivation for future work in environment-aware, adaptively shaped structured beams.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC