posted on 2023-09-07, 16:00authored byHannah Thiel, Marita Wagner, Bianca Nardi, Alexander Schlager, Robert J. Chapman, Stefan Frick, Holger Suchomel, Martin Kamp, Sven Höfling, Christian Schneider, Gregor Weihs
Entangled photon pairs are an important resource for quantum cryptography schemes that go beyond point-to-point communication. Semiconductor Bragg-reflection waveguides are a promising photon-pair source due to mature fabrication, integrability, large transparency window in the telecom wavelength range, integration capabilities for electro-optical devices as well as a high second-order nonlinear coefficient. To increase performance we improved the fabrication of Bragg-reflection waveguides by employing fixed-beam-moving-stage optical lithography, low pressure and low chlorine concentration etching, and resist reflow. The reduction in sidewall roughness yields a low optical loss coefficient for telecom wavelength light of alpha_reflow = 0.08(6)mm^(-1). Owing to the decreased losses, we achieved a photon pair production rate of 8800(300)(mW*s*mm)^(-1) which is 15-fold higher than in previous samples.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.