Optica Open
Browse
arXiv.svg (5.58 kB)

Far-field three-dimensional deep-subwavelength focal spot with azimuthal polarization

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:42 authored by Zhongquan Nie, Jiawei Liu, Xiaofei Liu, Weichao Yan, Yanxiang Zhang, Yanting Tian, Shaoding Liu, Baohua Jia
This work focuses on the generation of far-field super-resolved pure-azimuthal focal field based on the fast Fourier transform. A self-designed differential filter is first pioneered to robustly reconfigure a doughnut-shaped azimuthal focal field into a bright one with a sub-wavelength lateral scale (0.392{\lambda}), which offers a 27.3% reduction ratio relative to that of tightly focused azimuthal polarization modulated by a spiral phase plate. By further uniting the versatile differential filter with spatially shifted beam approach, in addition to allowing for an extremely sharper focal spot, whose size is in turn reduced to 0.228{\lambda} and 0.286{\lambda} in the transverse as well as axial directions, the parasitic sidelobes are also lowered to an inessential level (< 20%), thereby enabling an excellent three-dimensional deep-subwavelength focal field ({\lambda}3/128). The relevant phase profiles are further exhibited to unravel the annihilation of field singularity and locally linear (i.e. azimuthal) polarization. Our scheme opens a promising route toward efficiently steer and tailor the redistribution of the focal field.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC