posted on 2023-11-15, 17:00authored bySwetapadma Sahoo, Junyue Jiang, Jaden Li, Kieran Loehr, Chad E. Germany, Jincheng Zhou, Bryan K. Clark, Simeon I. Bogdanov
Confocal fluorescence microscopy is widely applied for the study of point-like emitters such as biomolecules, material defects, and quantum light sources. Confocal techniques offer increased optical resolution, dramatic fluorescence background rejection and sub-nanometer localization, useful in super-resolution imaging of fluorescent biomarkers, single-molecule tracking, or the characterization of quantum emitters. However, rapid, noise-robust automated 3D focusing on point-like emitters has been missing for confocal microscopes. Here, we introduce FiND (Focusing in Noisy Domain), an imaging-free, non-trained 3D focusing framework that requires no hardware add-ons or modifications. FiND achieves focusing for signal-to-noise ratios down to 1, with a few-shot operation for signal-to-noise ratios above 5. FiND enables unsupervised, large-scale focusing on a heterogeneous set of quantum emitters. Additionally, we demonstrate the potential of FiND for real-time 3D tracking by following the drift trajectory of a single NV center indefinitely with a positional precision of < 10 nm. Our results show that FiND is a useful focusing framework for the scalable analysis of point-like emitters in biology, material science, and quantum optics.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.