Optica Open
Browse

Filamentation-Assisted Isolated Attosecond Pulse Generation

Download (5.58 kB)
preprint
posted on 2024-12-11, 17:00 authored by Yu-En Chien, Marina Fernández-Galán, Ming-Shian Tsai, An-Yuan Liang, Enrique Conejero-Jarque, Javier Serrano, Julio San Román, Carlos Hernández-García, Ming-Chang Chen
Isolated attosecond pulses (IAPs) generated by few-cycle femtosecond lasers are essential for capturing ultrafast dynamics in atoms, molecules, and solids. Nonetheless, the advancement of attosecond science critically depends on achieving stable, high-temporal-contrast IAPs. Our study reveals a universal scenario in which self-compression of the infrared driver in high harmonic generation in extended gas media leads to high-contrast high-frequency IAP generation. Our experimental and theoretical results reveal that filamentation in a semi-infinite gas cell not only shapes the infrared driving pulse spatially and temporally, but also creates a stable propagation region where high harmonic generation is phase-matched, leading to the production of bright IAPs. In an argon-filled gas cell, filamentation notably reduces the pulse duration of Yb-based 1030 nm pulses from 4.7 fs to 3.5 fs, while simultaneously generating high-contrast 200-attosecond IAPs at 70 eV. We demonstrate the universality of filamentation-assisted IAP generation, showing that post-compressed Yb-based laser filaments in neon and helium yield even shorter IAPs: 69-attoseconds at 100 eV, and 65-attoseconds IAPs at 135 eV, respectively. This spatiotemporal reshaping of few-cycle pulses through filamentation possesses immediate impacts on both post-compression techniques and attosecond-based technologies.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC