Optica Open
Browse
arXiv.svg (5.58 kB)

First observation of laser-beam interaction in a dipole magnet

Download (5.58 kB)
preprint
posted on 2023-11-30, 21:08 authored by Jiawei Yan, Nanshun Huang, Haixiao Deng, Bo Liu, Dong Wang, Zhentang Zhao
As a new-generation light source, free-electron lasers (FELs) provide high-brightness X-ray pulses at the angstrom-femtosecond space and time scales. The fundamental physics behind the FEL is the interaction between an electromagnetic wave and a relativistic electron beam in an undulator, which consists of hundreds or thousands of dipole magnets with an alternating magnetic field. Here, we report the first observation of the laser-beam interaction in a pure dipole magnet, in which the electron beam energy modulation with 40-keV amplitude and 266-nm period is measured. We demonstrate that such an energy modulation can be used to launch a seeded FEL, that is, lasing at the sixth harmonic of the seed laser in a high-gain harmonic generation scheme. The results reveal the most basic process of the FEL lasing and open up a new direction for the study and exploitation of laser-beam interactions.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC