Optica Open
Browse
arXiv.svg (5.58 kB)

Forward-Mode Differentiation of Maxwell's Equations

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:52 authored by Tyler W Hughes, Ian A D Williamson, Momchil Minkov, Shanhui Fan
We present a previously unexplored forward-mode differentiation method for Maxwell's equations, with applications in the field of sensitivity analysis. This approach yields exact gradients and is similar to the popular adjoint variable method, but provides a significant improvement in both memory and speed scaling for problems involving several output parameters, as we analyze in the context of finite-difference time-domain (FDTD) simulations. Furthermore, it provides an exact alternative to numerical derivative methods, based on finite-difference approximations. To demonstrate the usefulness of the method, we perform sensitivity analysis of two problems. First we compute how the spatial near-field intensity distribution of a scatterer changes with respect to its dielectric constant. Then, we compute how the spectral power and coupling efficiency of a surface grating coupler changes with respect to its fill factor.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC