Optica Open
Browse

Frequency-domain engineering of bright squeezed vacuum for continuous-variable quantum information

Download (5.58 kB)
preprint
posted on 2023-06-15, 16:00 authored by Inbar Hurvitz, Aviv Karnieli, Ady Arie
Multimode bright squeezed vacuum is a non-classical state of light hosting a macroscopic photon number while offering promising capacity for encoding quantum information in its spectral degree of freedom. Here, we employ an accurate model for parametric downconversion in the high-gain regime and use nonlinear holography to design quantum correlations of bright squeezed vacuum in the frequency domain. We propose the design of quantum correlations over two-dimensional lattice geometries that are all-optically controlled, paving the way toward continuous-variable cluster state generation on an ultrafast timescale. Specifically, we investigate the generation of a square cluster state in the frequency domain and calculate its covariance matrix and the quantum nullifier uncertainties, that exhibit squeezing below the vacuum noise level.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC