Optica Open
Browse

Frequency comb up- and down-conversion in a synchronously-driven $\chi^{(2)}$ optical microresonator

Download (5.58 kB)
preprint
posted on 2023-11-30, 06:13 authored by Simon J. Herr, Victor Brasch, Jan Szabados, Ewelina Obrzud, Yuechen Jia, Steve Lecomte, Karsten Buse, Ingo Breunig, Tobias Herr
Optical frequency combs are key to optical precision measurements. While most frequency combs operate in the near-infrared regime, many applications require combs at mid-infrared, visible or even ultra-violet wavelengths. Frequency combs can be transferred to other wavelengths via nonlinear optical processes, however, this becomes exceedingly challenging for high-repetition rate frequency combs. Here, it is demonstrated that a synchronously driven high-Q microresonator with a second-order optical nonlinearity can efficiently convert high-repetition rate near-infrared frequency combs to visible, ultra-violet and mid-infrared wavelengths providing new opportunities for microresonator and electro-optic combs in applications including molecular sensing, astronomy, and quantum optics.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC