Optica Open
Browse

Full C- and L-band tunable erbium-doped integrated lasers via scalable manufacturing

Download (5.58 kB)
preprint
posted on 2025-01-15, 17:00 authored by Xinru Ji, Xuan Yang, Yang Liu, Zheru Qiu, Grigory Lihachev, Simone Bianconi, Jiale Sun, Andrey Voloshin, Taegon Kim, Joseph C. Olson, Tobias J. Kippenberg
Erbium (Er) ions are the gain medium of choice for fiber-based amplifiers and lasers, offering a long excited-state lifetime, slow gain relaxation, low amplification nonlinearity and noise, and temperature stability compared to semiconductor-based platforms. Recent advances in ultra-low-loss silicon nitride (Si$_3$N$_4$) photonic integrated circuits, combined with ion implantation, have enabled the realization of high-power on-chip Er amplifiers and lasers with performance comparable to fiber-based counterparts, supporting compact photonic systems. Yet, these results are limited by the high (2 MeV) implantation beam energy required for tightly confined Si$_3$N$_4$ waveguides (700 nm height), preventing volume manufacturing of Er-doped photonic integrated circuits. Here, we overcome these limitations and demonstrate the first fully wafer-scale, foundry-compatible Er-doped photonic integrated circuit-based tunable lasers. Using 200 nm-thick Si$_3$N$_4$ waveguides, we reduce the ion beam energy requirement to below 500 keV, enabling efficient wafer-scale implantation with an industrial 300 mm ion implanter. We demonstrate a laser wavelength tuning range of 91 nm, covering nearly the entire optical C- and L-bands, with fiber-coupled output power reaching 36 mW and an intrinsic linewidth of 95 Hz. The temperature-insensitive properties of erbium ions allowed stable laser operation up to 125$^{\circ}$C and lasing with less than 15 MHz drift for over 6 hours at room temperature using a remote fiber pump. The fully scalable, low-cost fabrication of Er-doped waveguide lasers opens the door for widespread adoption in coherent communications, LiDAR, microwave photonics, optical frequency synthesis, and free-space communications.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC