posted on 2023-11-30, 19:47authored byChristopher Panuski, Dirk Englund, Ryan Hamerly
We present a joint theoretical and experimental characterization of thermo-refractive noise in high quality factor ($Q$), small mode volume ($V$) optical microcavities. Analogous to well-studied stability limits imposed by Brownian motion in macroscopic Fabry-Perot resonators, microcavity thermo-refractive noise gives rise to a mode volume-dependent maximum effective quality factor. State-of-the-art fabricated microcavities are found to be within one order of magnitude of this bound. We confirm the assumptions of our theory by measuring the noise spectrum of high-$Q/V$ silicon photonic crystal cavities and apply our results to estimate the optimal performance of proposed room temperature, all-optical qubits using cavity-enhanced bulk material nonlinearities.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.