Optica Open
Browse

Gaussian quantum resource theories

Download (5.58 kB)
preprint
posted on 2023-11-30, 05:05 authored by Ludovico Lami, Bartosz Regula, Xin Wang, Rosanna Nichols, Andreas Winter, Gerardo Adesso
We develop a general framework to assess capabilities and limitations of the Gaussian toolbox in continuous variable quantum information theory. Our framework allows us to characterize the structure and properties of quantum resource theories specialized to Gaussian states and Gaussian operations, establishing rigorous methods for their description and yielding a unified approach to their quantification. We show in particular that, under a few intuitive and physically motivated assumptions on the set of free states, no Gaussian quantum resource can be distilled with free Gaussian operations, even when an unlimited supply of the resource state is available. This places fundamental constraints on state manipulations in all such Gaussian resource theories. We discuss in particular the applications to quantum entanglement, where we extend previously known results by showing that Gaussian entanglement cannot be distilled even with Gaussian operations preserving the positivity of the partial transpose, as well as to other Gaussian resources such as steering and optical nonclassicality. A comprehensive semidefinite programming representation of all these resources is explicitly provided.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC