Optica Open
Browse

Generalized Space-Time Engineered Modulation (GSTEM) Metamaterials

Download (5.58 kB)
preprint
posted on 2023-01-12, 15:51 authored by Christophe Caloz, Zoé-Lise Deck-Léger, Amir Bahrami, Oscar Céspedes Vicente, Zhiyu Li
This article presents a global and generalized perspective of electrodynamic meta-materials formed by space and time engineered modulations, which we name Generalized Space-Time Engineered Modulation (GSTEM) Metamaterials, or GSTEMs. In this perspective, it describes metamaterials from a unified spacetime viewpoint and introduces accelerated metamaterials as an extra type of dynamic metamaterials. First, it positions GSTEMs in the even broader context of electrodynamic systems that include (non-modulated) moving sources in vacuum and moving bodies, explains the difference between the moving-matter nature of the latter and the moving-perturbation nature of GSTEMs, and enumerates the different types of GSTEMs considered, namely Space EMs (SEMs), Time EMs (TEMs), Uniform Space-Time EMs (USTEMs) and Accelerated Space-Time EMs (ASTEMs). Next, it establishes the physics of the related interfaces, which includes direct-spacetime scattering and inverse-spacetime transition transformations. Then, it exposes the physics of the GSTEM metamaterials formed by stacking these interfaces and homogenizing the resulting crystals; this includes an original explanation of light deflection by USTEMs as being a spacetime weighted averaging phenomenon and the demonstration of ASTEM light curving and black-hole light attraction. Finally, it discusses some future prospects. Useful complementary information and animations are provided in the Supplementary Material.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC