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Abstract: We investigate the dynamic of optical rogue waves induced by super-Gaussian (SG)
pulses in fiber optic. SG pulses with controlled steep leading and trailing edges can produce
high-intensity self-focusing when propagate in nonlinear fibers with weak dispersion and strong
nonlinearity. We observe the emergence of various rogue waves, including Peregrine breathers,
Akhmediev breathers (AB) and 2nd-order AB. By adjusting the steepness of the SG pulses, the
generation of these rogue waves can be controlled. As the steepness of the SG pulse increases,
we find the fundamental-order AB can stably coexist. Simultaneously, we reveal that the period
of these ABs can be effectively controlled by adjusting the steepness of the SG pulse. At a
certain steepness, the 2nd-order AB with high power can also be observed. We also investigate
the propagation of SG pulses with an initial chirp in fiber optic and found that they can also
control AB and 2nd-order Peregrine breathers. Our findings present a new approach to generating
controllable rogue waves.
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1. INTRODUCTION

Rogue waves (RWs), also referred to as deformed waves or giant waves, are waves with
extraordinarily large amplitudes and possess the rare and unpredictable characteristics [1–4]. In
the beginning, investigations on RWs were mainly focused on the ocean [5,6], and then there was
an extensive investigation in other fields of physics, including nonlinear optics [7–9], plasmas [10]
and Bose-Einstein condensates [11]. In 2007, the first observation of the existence of optical
RWs was reported in the work of Solli 𝑒𝑡 𝑎𝑙., when they investigated the heavy-tailed histograms
of intensity fluctuations in supercontinuum generation [12]. Since then, optical RWs have been
attracting the interest of research on both theoretical and experimental sides, due to their potential
applications and relative ease of creation and capture in laboratory settings [13]. The optical
RWs have now been successfully observed in many optical settings such as optical fibers [14],
mode-locked lasers [15], Raman fiber lasers [16] and photorefractive ferroelectrics [17].

Several possible physical mechanisms for the formation of RWs have been identified, such as
modulation instability and nonlinear superposition or collision of several breathers [18, 19]. The
focusing nonlinear Schrödinger equation (NLSE) is the simplest partial differential equation that
can be used to describe the propagation of optical waves in fibers. Its modulational instability
phenomenon is believed to be a fundamental mechanism for the formation of RWs [20]. The
analytical solutions of the NLSE referred to as soliton on finite background or breathers have
been identified [21, 22]. Among those are the Akhmediev breather (AB), the Kuznetsov-Ma
breather (KM) and the Peregrine breather (PB), and they are also known as RWs solutions [23].
AB and KM are periodic in time and space, respectively, while PB is localized both in time
and space. In 2010, Kibler 𝑒𝑡 𝑎𝑙. proved PB in nonlinear optical fiber experiments [24], and
subsequent studies in different optical media and optical systems discovered the existence of
PB [25–27]. The dynamics of AB and KM solitons in optical fibers have also been verified and
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observed [28–31].
Pulses with different initial conditions as input to focusing NLSE are also a method to stimulate

the formation of RWs. Research in the semiclassical (zero-dispersion) limit of the focusing NLSE
revealed a fundamental mechanism that universally leads to the emergence of local PB [32].
Experiments using high-power pulses injected into optical fibers show the universality of PB in
focusing NLSE [33]. A rectangular barrier is considered as the initial condition for focusing
NLSE, it is also known as the box problem, which describes the evolution and interaction of
two counter-propagating nonlinear wave trains [34]. The generation of RWs in the box problem
for the focusing NLSE has been theoretically analyzed [35], and this phenomenon has also
been observed in experiments involving focusing dam-break flows in single-mode fiber [36].
Topological control of RWs has been achieved both theoretically and experimentally in focusing
photorefractive medium with rectangular pulses as the initial condition [37]. These experiments
and theories have investigated the focusing evolution of the 12th-order super-Gaussian (SG) pulse.
However, the dynamics of RWs generated by SG pulses of different steepness still require further
investigation.

In this paper, we report the propagation of SG pulses with different steepness in nonlinear fiber
optic with weak anomalous dispersion. We observe that SG pulse, characterized by a flat top
and two steep edges, can induce the formation of various RWs during its nonlinear propagation.
The steepness of the SG pulse plays a crucial role in controlling the formation of different RWs.
Through numerical simulations, we discover that the time, space, and intensity of the first focus
vary depending on the steepness of the input pulse. Simultaneously, when the edges are relatively
flat, we observe that the first focus sometimes present a PB structure. When the edges are steeper,
the collision point of the shock waves fits well with a PB shape, and we can observe a stable AB
generation. Notably, the period and intensity of the AB are dependent on the steepness of the SG
pulses. Furthermore, we find that SG pulse with steeper edges can also generate a 2nd-order AB.
SG pulses with initial chirp can also generate AB and 2nd-order PB in fiber optic propagation.

2. THEORETICAL MODEL

The propagation of the optical pulse can be described by the one-dimensional integrable focusing
NLSE shown as follows [38]:
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where 𝜓(𝜉, 𝜏) is the complex field envelope that varies slowly over 𝜉 and 𝜏, and the parameters
of Eq. (1) are all dimensionless. Physically dimensionless parameter 𝜀 =
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𝐿𝑁𝐿 and 𝐿𝐷 are the nonlinear length and the dispersion length, respectively. For the parameter
used in optics, it can be written as 𝜀 =
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0 , where 𝛽2 is the group velocity dispersion

coefficient, 𝛾 the third-order nonlinear coefficient.
The AB solution of Eq. (1) has the following form [39]:
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where in Eq. (2):

𝑝 = 2 sin(𝜑),Ω = 2 sin(2𝜑), (3)

the AB solution is periodic in time with its period 𝑇 = 2𝜋𝜀/𝑝. The PB solution can be obtained
from the AB solution by letting 𝑝 → 0, and it is described by the rational solution of Eq. (1) [22].
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The 2nd-order AB solution can be formed by the superposition of two ABs, and we can deduce
that its expression is [40]:
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where Eq. (5):
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be formed by two AB nonlinear superposition, only when the modulation frequencies obey
𝜔1/𝜔2 = 1/2.

The maximum compression intensity of 2nd-order PB is 25 times that of the background wave,
and its form is as follows [40]:
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The above solutions are all referred to as the exact RW solutions of the NLSE.

3. NUMERICAL RESULTS AND DISCUSSIONS

The incident SG pulse has the following form [41]:
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where 𝑚 is the parameter controlling the steepness of the SG pulse, and 𝐶 is the initial chirp
and 𝑇0 is the pulse half-width (peak intensity of 1/e point of pulse). According to Eq. (13),
the temporal waveform of the SG pulse is affected by the shape parameter 𝑚. For 𝑚 = 1, It is
a Gaussian pulse. For 𝑚 ≥ 2, The Eq. (13) is expressed as the SG pulse. The results of the
numerical simulations when 𝑚 takes different values of 2, 5, and 10 are shown in Fig. 1(a). It is
clear that the steepness of the leading and trailing edges of the SG pulse steepens with increasing
𝑚. Moreover, The larger the 𝑚, the shorter the time it takes for the edge of the SG pulse to rise
to peak power. The rise time 𝑇𝑟 is defined as the duration during which the intensity increases
from 10% to 90% of its peak value and the relationship between 𝑇𝑟 and 𝑚 can be expressed as
follows [41]:

𝑇𝑟 = (ln9) 𝑇0
2𝑚

, (14)

which is shown in Fig. 1(b). As the 𝑚 increases, 𝑇𝑟 shows a exponential decrease.

Fig. 1. (a) SG pulses with different 𝑚. (b) 𝑇𝑟 as a function of the 𝑚. Temporal evolution
of (c) 𝑚 = 2 and (d) 𝑚 = 10 in an anomalous dispersive, where 𝜀 = 0.03.



We consider the propagation of SG pulses with different initial waveforms in fiber optic, using
𝑚 to change the temporal waveform of the SG pulses. In our numerical simulations, the 𝑇0
and the dispersion parameter 𝜀 set are equal to 1 and 0.03, respectively. Figures. 1(c, d) show
the temporal evolution of SG pulses with 𝑚 = 2 and 𝑚 = 10 in anomalous dispersion regions,
respectively. As shown in the temporal evolution of SG pulse, the SG pulse will generate temporal
focusing at a certain propagation distance. After the first focus, the SG pulse forms shock waves
moving towards the center on both edges during propagation, and then the shock waves on both
edges collide with each other [36, 37]. After shock waves collide with each other, a series of
complicated breather structures are formed. It is evident that pulses of different steepness exhibit
distinct compression characteristics. The distance of the first focus of a SG pulse with 𝑚 = 10
appears closer than that of a SG pulse with 𝑚 = 2, as shown in Figs. 1(c, d). The first focus of
the SG pulse with 𝑚 = 2 generates an RW at 𝜉 = 0.45 with its intensity ∼11, while the first focus
of the SG pulse with 𝑚 = 10 appears at 𝜉 = 0.16 only with its intensity ∼6.

Fig. 2. (a) Temporal profiles at the first focus for evolution with different 𝑚 of SG pulse
input. (b-d) The time position with 𝜏 > 0, distance, and peak intensity of the first focus
change curves with 𝑚

We know significant differences in peak intensity (|𝜓 |2
𝑓
), lateral time (𝜏 𝑓 ), and distance (𝜉 𝑓 )

between the first focus of different 𝑚. Figure. 2(a) shows the maximum compression profile of the
first focus for SG pulses with 𝑚 = 2, 10, and 20. It is evident in the figure that the compression
intensity of the first focus decreases as the 𝑚 increases. To further investigate the characteristics
of the first focus at different 𝑚. Figures. 2(b-d) show the variations in the time, distance, and
peak intensity of the first focus on the right circled by the white solid circle in Figs. 1(c, d) with
respect to 𝑚, respectively. The time increases with 𝑚, whereas the distance and peak intensity
decrease exponentially with 𝑚. The propagation dynamics of different SG pulses vary due to
differences in the intensity and distance of their first focus. In further propagation, the SG pulses
with 𝑚 = 2 form high-power breathers, whereas the SG pulses with 𝑚 = 20 generate temporal



periodic breathers.

Fig. 3. (a-c) Temporal evolution of SG pulses with 𝑚 values of 2, 4, and 10, respectively.
(d) Comparison between the first focus and PB. (e) Comparison between collision
points and PB.

When 𝑚 is relatively small, the intensity of the first focus reaches the standard PB intensity,
and the intensity of the collision points formed by the shock waves at both edges is also the same
as the intensity of the RWs. In Figs. 3(a-c), white and red circles highlight the first focus and
collision point, respectively. Figure. 3(d) shows a comparison of the intensity of PB (Eq. (4))
and the first focus of SG pulses with different 𝑚 values. It can be seen from the figure that the
first focus with 𝑚 = 4 can fit well with PB, while the intensity of the first focus with 𝑚 = 2
is slightly higher than that of the PB. Therefore, we can know that when 𝑚 is small, the first
focus is a RW, which degenerates into a soliton as 𝑚 increases. 𝑚 = 4 and 𝑚 = 10 formed a
high-intensity collision point at the center, and we also compare the collision point with PB, as
shown in Fig. 3(e). The collision point can also fit well with PB, especially when 𝑚 = 10. When
𝑚 = 4, the collision point can also fit well with the PB, but the intensity is slightly higher than
that of the PB.

The interaction of the shock waves results in the formation of a series of ABs during the
propagation of the SG pulse with steeper edges. Figure. 4(a) illustrates the temporal evolution
of an SG pulse with 𝑚 = 18. We examined their temporal profiles at 𝜉 = 1 using AB solution
derived from Eq. (2). A thorough analysis of the generated AB is depicted in Fig. 4(b), revealing
a remarkable agreement with Eq. (2). The temporal period 𝑇 of the generated ABs can be
well-controlled by 𝑚 at 𝜉 = 1, as shown in Fig. 4(c). Our findings demonstrate that the temporal
period of the generated AB increases with 𝑚. When 𝑚 > 27, the temporal period tends to
be 𝑇 = 0.164. Such marginal effect originates from that the steepness of SG edges is almost
unchanged less with larger 𝑚. Figure. 4(a) illustrates that the peak intensity, with a temporal
period, reaches a maximum value of 17 (as indicated by the color bar) at a distance of 𝜉 = 1.3.
Surprisingly, we find such a strong compression generates a 2nd-order AB, as shown in Fig. 4(d).
The numerical simulations show good agreement with the analytical results obtained from Eq. (5)
for the 2nd-order AB. It is worth noting that the 2nd-order AB is formed by the superposition of



Fig. 4. (a) Temporal evolutions of the SG pulse with 𝑚 = 18. (b) Temporal profiles
of generated and analytical AB. (c) The AB period as a function of 𝑚. (d) Temporal
profiles of generated and analytical 2nd-order AB.

two fundamental-order ABs, which are generated at propagation distances 𝜉 = 1.1 and 𝜉 = 1.2.

Fig. 5. (a-d) Temporal evolution of SG pulses with 𝑚 = 2, 3, 4, and 10 under initial
chirp 𝐶 = 5. (e-f) The comparison between the breathers formed by the SG pulse with
𝑚 = 4 and 𝑚 = 9 at different propagation distances and the AB.

SG pulses with initial chirp can also generate RWs when propagate in fiber optic. Figures. 5(a-d)
show the propagation evolution of 𝑚 = 2, 3, 4, and 9 under initial chirp 𝐶 = 5. From the figures,
it can be seen that as 𝑚 increases, the first focus disappears and both edges become twisted
outward. When the initial chirp 𝐶 = 5 and 𝑚 is relatively small, the two shock waves collide
with each other to form periodic breathers in time, as shown in Figs. 5(b-d). In Figs. 5(e, f), we
compared the breathers of 𝑚 = 4 and 𝑚 = 9 with AB at propagation distances 𝜉 = 1 and 𝜉 = 0.87,



respectively. The comparison results show that the intensity and period can fit well with AB.
In addition, when the 𝑚 = 2 and 𝑚 = 3, ultra-high intensity breathers will form under negative
chirp, with an intensity close to 2nd-order PB. Figures. 6(a, b) show the propagation evolution
of SG pulses with 𝑚 = 2 and 𝑚 = 3 at chirps 𝐶 = −11 and 𝐶 = −12, indicating the formation
of a high-intensity breather during the collision of shock waves at both edges. We compare the
2nd-order PB (Eq. (9)) with the collision points and found that the intensity distribution can be
well fitted, as shown in Figs. 6(c, d). The collision point intensity of 𝑚 = 2 is higher than that
of 𝑚 = 3. When 𝑚 is smaller, the intensity of the first focus is higher, and the collision point
intensity formed by the interaction is also higher.

Fig. 6. (a-b) Temporal evolution of SG pulses with 𝑚 = 2, and 3 under initial chirp
𝐶 = −11, and 𝐶 = −12. (c-d) The comparison of 2nd-order PB and collision points
formed by SG pulses with 𝑚 = 2 and 𝑚 = 2, respectively.

4. CONCLUSION

In conclusion, we investigate the RWs generated by SG pulses with different steepness in fiber
optic propagation. SG pulses with different steepness exhibit different propagation characteristics
in fiber optic. Firstly, the intensity and distance of the first focus can be adjusted by the steepness.
When 𝑚 is relatively small, the first focus is RW. However, as 𝑚 increases, the first focus changes
from RW to a soliton. At a certain value of 𝑚, the collision point formed by the shock wave is
also RW. In addition, the SG pulses with steeper edges can generate the fundamental-order ABs,
of which the period can be well-controlled by the steepness of the SG pulses. The 2nd-order
AB can be surprisingly generated by an SG pulse with 𝑚 = 18. SG pulses with positive chirp
can also generate AB during fiber optic propagation. Furthermore, SG pulses with negative
chirp generate high-intensity 2nd-order PB during propagation. These findings will provide
new inspirations for the control of RWs generation. These results demonstrate the prevalence of
RWs in fiber optics and are also useful for experiments in fiber optics [36] and for wave-based
computations using machine learning [42].
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