Optica Open
Browse

Generation of Relativistic Structured Spin-Polarized Lepton Beams

Download (5.58 kB)
preprint
posted on 2025-04-17, 16:02 authored by Zhong-Peng Li, Yu Wang, Yousef I. Salamin, Mamutjan Ababekri, Feng Wan, Qian Zhao, Kun Xue, Ye Tian, Jian-Xing Li
Relativistic structured spin-polarized (SSP) particle beams, characterized by polarization structures, are of critical importance in a wide range of applications, such as material properties investigation, imaging, and information storage. However, generation of relativistic SSP beams faces significant challenges. Here, we put forward a novel method for generating relativistic SSP lepton beams via employing a moderate-intensity terahertz (THz) wave. Building upon our foundational work on velocity-matched spin rotation in dielectric-lined waveguides [Phys. Rev. Lett. 134, 075001 (2025)], we present the first demonstration of spin-polarization mode matching - a novel mechanism that establishes a direct relation between waveguide modes and beam polarization states. This breakthrough enables precise spatial control over spin structures at relativistic energies, generating customizable spin-polarization configurations such as spider-like, azimuthal, and helical structures, etc. Such SSP beams have the potential to generate high-energy structured photon beams and open a new avenue for research on relativistic structured particle beams, especially in nuclear physics, high-energy physics, materials science and atomic physics.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC