posted on 2023-01-12, 14:16authored byMinjie Wang, Shengzhi Wang, Tengfei Ma, Ya Li, Yan Xie, Haole Jiao, Hailong Liu, Shujing Li, Hai Wang
A qubit memory is the building block for quantum information. Cavity-enhanced spin-wave-photon entanglement has been achieved by applying dual-control modes. However, owing to cross readouts between the modes, the qubit retrieval efficiency is about one quarter lower than that for a single spin-wave mode at all storage times. Here, we overcome cross readouts using a multiplexed ring cavity. The cavity is embedded with a polarization interferometer, and we create a write-out photonic qubit entangled with a magnetic-field-insensitive spin-wave qubit by applying a single-mode write-laser beam to cold atoms. The spin-wave qubit is retrieved with a single-mode read-laser beam, and the quarter retrieval-efficiency loss is avoided at all storage times. Our experiment demonstrates 50% intrinsic retrieval efficiency for 540 microsecond storage time, which is 13.5 times longer than the best reported result. Importantly, our multiplexed-cavity scheme paves one road to generate perfect-cavity-enhanced and large-scale multiplexed spin-wave-photon entanglement with a long lifetime.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.