Optica Open
Browse

Generation of robust spatiotemporal optical vortices with transverse orbital angular momentum beyond $10^2$

Download (5.58 kB)
preprint
posted on 2023-01-12, 13:54 authored by Wei Chen, Wang Zhang, Yuan Liu, Fan-Chao Meng, John M. Dudley, Yan-Qing Lu
Recently, photons have been observed to possess transverse orbital angular momentum (OAM); however, it is unclear as whether they can hold a transverse OAM higher than 1. Here, we theoretically and experimentally demonstrate that high-order spatiotemporal Bessel optical vortices (STBOVs) can stably carry transverse OAM even beyond $10^2$. Through the inverse design of the spiral phase, an STBOV of any order can be controllably generated using a 4f pulse shaper. In contrast to conventional longitudinal OAM, the vector direction of the transverse OAM can be distinguished by the unique time-symmetrical evolution of STBOVs. More interestingly, the stability of STBOVs improves with their increasing orders owing to enhanced space-time coupling, making these beams particularly suitable for the generation of ultra-high transverse OAM. Our work paves the way for further research and application of this unique OAM of photons.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC