Optica Open
Browse

Generation of sub-MHz and spectrally-bright biphotons from hot atomic vapors with a phase mismatch-free scheme

Download (5.58 kB)
preprint
posted on 2023-11-30, 21:08 authored by Chia-Yu Hsu, Yu-Sheng Wang, Jia-Mou Chen, Fu-Chen Huang, Yi-Ting Ke, Emily Kay Huang, Weilun Hung, Kai-Lin Chao, Shih-Si Hsiao, Yi-Hsin Chen, Chih-Sung Chuu, Ying-Cheng Chen, Yong-Fan Chen, Ite A. Yu
We utilized the all-copropagating scheme, which maintains the phase-match condition, in the spontaneous four-wave mixing (SFWM) process to generate biphotons from a hot atomic vapor. The scheme enables our biphotons not only to surpass those in the previous works of hot-atom SFWM, but also to compete with the biphotons that are generated by either the cold-atom SFWM or the cavity-assisted spontaneous parametric down conversion. The biphoton linewidth in this work is tunable for an order of magnitude. As we tuned the linewidth to 610 kHz, the maximum two-photon correlation function, $g_{s,as}^{(2)}$, of the biphotons is 42. This $g_{s,as}^{(2)}$ violates the Cauchy-Schwartz inequality for classical light by 440 folds, and demonstrates that the biphotons have a high purity. The generation rate per linewidth of the 610-kHz biphoton source is 1,500 pairs/(s$\cdot$MHz), which is the best result of all the sub-MHz biphoton sources in the literature. By increasing the pump power by 16 folds, we further enhanced the generation rate per linewidth to 2.3$\times$10$^4$ pairs/(s$\cdot$MHz), while the maximum $g_{s,as}^{(2)}$ became 6.7. In addition, we are able to tune the linewidth down to 290$\pm$20 kHz. This is the narrowest linewidth to date, among all the various kinds of single-mode biphotons.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC