Optica Open
Browse

Grating design methodology for tailored free-space beam-forming

Download (5.58 kB)
preprint
posted on 2023-06-18, 16:01 authored by Gillenhaal J. Beck, Jonathan P. Home, Karan K. Mehta
We present a design methodology for free-space beam-forming with general profiles from grating couplers which avoids the need for numerical optimization, motivated by applications in ion trap physics. We demonstrate its capabilities through a variety of gratings using different wavelengths and waveguide materials, designed for new ion traps with all optics fully integrated, including UV and visible wavelengths. We demonstrate designs for diffraction-limited focusing without restriction on waveguide taper geometry, emission angle, or focus height, as well as focused higher order Hermite-Gaussian and Laguerre-Gaussian beams. Additional investigations examine the influence of grating length and taper angle on beam-forming, indicating the importance of focal shift in apertured beams. The design methodology presented allows for efficient design of beamforming gratings with the accuracy as well as the flexibility of beam profile and operating wavelength demanded by application in atomic systems.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC