Optica Open
Browse

Guidestar-free image-guided wavefront-shaping

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:06 authored by Tomer Yeminy, Ori Katz
Optical imaging through scattering media is a fundamental challenge in many applications. Recently, substantial breakthroughs such as imaging through biological tissues and looking around corners have been obtained by the use of wavefront-shaping approaches. However, these require an implanted guide-star for determining the wavefront correction, controlled coherent illumination, and most often raster scanning of the shaped focus. Alternative novel computational approaches that exploit speckle correlations, avoid guide-stars and wavefront control but are limited to small two-dimensional objects contained within the memory-effect correlations range. Here, we present a new concept, image-guided wavefront-shaping, allowing non-invasive, guidestar-free, widefield, incoherent imaging through highly scattering layers, without illumination control. Most importantly, the wavefront-correction is found even for objects that are larger than the memory-effect range, by blindly optimizing image-quality metrics. We demonstrate imaging of extended objects through highly-scattering layers and multi-core fibers, paving the way for non-invasive imaging in various applications, from microscopy to endoscopy.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC