Integrated photonics provides a route both to miniaturize quantum key distribution (QKD) devices and to enhance their performance. A key element for achieving discrete-variable QKD is a single-photon detector. It is highly desirable to integrate detectors onto a photonic chip to enable the realization of practical and scalable quantum networks. We realize an integrated heterogeneous superconducting-silicon-photonic chip. Harnessing the unique high-speed feature of our optical waveguide-integrated superconducting detector, we perform the first optimal Bell-state measurement (BSM) of time-bin encoded qubits generated from two independent lasers. The optimal BSM enables an increased key rate of measurement-device-independent QKD, which is immune to all attacks against the detection system, and hence provides the basis for a QKD network with untrusted relays. Together with the time-multiplexed technique, we have enhanced the sifted key rate by almost one order of magnitude. With a 125 MHz clock rate, we obtain a secure key rate of 6.166 kbps over 24.0 dB loss, which is comparable to the state-of-the-art MDI-QKD experimental results with GHz clock rate. Combined with integrated QKD transmitters, a scalable, chip-based and cost-effective QKD network should become realizable in the near future.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.